Page 12 - 10-Math-1 QUADRATIC EQUATIONS
P. 12

11. .QQuuaaddrraatitcicEEqquuaatitoionnss                                                             eeLleeaarrnn..Ppuunnjjaabb

                                           Example 4:  Solve the equation  51+x + x + 51 - x = 26.

                                           Solution: 	 51+x + x + 51 - x = 26      Let 5x = y.
                                           51 . 5x + 51 . 5-x = 26 or

                                           Then equation (i) becomes 5y + 5   - 26 = 0
                                                                                        y

                                           5y2 + 5 - 26y = 0 or 5y2 - 26y + 5 = 0

                                           5y2 - 25y - y + 5 = 0

                                           5y (y - 5) - 1(y - 5) = 0

                                           (y - 5) (5y - 1) = 0
                                           Either y - 5 = 0 or 5y - 1 = 0 , that is, y = 5 or 5y = 1 ⇒ y = 1
                                                                                                      5
                                           Put	 	 y = 5x

                                           5x = 51 	    or	 5x = 5-1        x = 1   or  x = -1

                                           ∴  The solution set is { +1}.

                                           Type (v) The equations of the type:
                                           (x + a) (x + b) (x + c) (x + d) = k , where a + b = c + d

                                           Example 5:  Solve the equation  (x - 1) (x + 2) (x + 8) (x + 5) = 19.

                                           Solution:	 (x - 1) (x + 2) (x + 8) (x + 5) = 19	     ( a -1 + 8 = 2 + 5)

                                           or	 [(x - 1) (x + 8)] [(x + 2) (x + 5)] - 19 = 0	
                                           	 (x2 + 7x - 8) (x2 + 7x + 10) - 19 = 0	 (i)
                                           Let	 x2 + 7x = y	

Version 1.1                                Then eq. (i) becomes	 (y - 8) (y + 10) - 19 = 0
                                           	 	 	 	 y2 + 2y - 80 - 19 = 0
                                                  	 	 	 	 y2 + 2y - 99 = 0
                                           	 	 	 	 y2 + 11y - 9y - 99 = 0
                                           	 	 	 	 y(y + 11) - 9(y + 11) = 0
                                                   	 	 	 	 (y + 11) (y - 9) = 0
                                           Either 	 	 	 y + 11 = 0	 or y - 9 = 0
                                           Put 	 	 	 	 y = x2 + 7x, so	 	
                                           	 	 	 	 x2 + 7x + 11 = 0 or x2 + 7x - 9 = 0

                                                                              12
   7   8   9   10   11   12   13   14   15   16   17