Page 29 - 10-Math-2 THEORY OF QUADRATIC EQUATIONS
P. 29

12..QTuhaedorraytiocf EQquuaadtrioatnics Equations                  eeLleeaarrnn..Ppuunnjjaabb

Example 1: Solve the system of equations                               Version 1.1
3x + y = 4    and    3x2 + y2 = 52.

Solution: The given equations are
	 	 3x + y = 4	 	 	 	 	 (i)
	 	 and	 3x2 + y2 = 52	 	 	 (ii)
	 	 From eq. (i)   y = 4 - 3x		 	 (iii)

    In an ordered pair (x, y), x always occupies first place and y
                                    second place.

	
	 	 Put value of y in eq. (ii)
	 	 3x2 + (4 - 3x)2 = 52
	 	 3x2 + 16 - 24x + 9x2 - 52 = 0
	 	 12x2 - 24x - 36 = 0   or   x2 - 2x - 3 = 0
	 	 By factorization
	 	 x2 - 3x + x - 3 = 0
	 	 x (x - 3) + 1 (x - 3) = 0
	 	 ⇒	 (x - 3) (x + 1) = 0
	
	 	 Either x - 3 = 0	 or	   x + 1 = 0, that is,
   	 	 x = 3	 or	            x = -1
	 	 Put the values of x in eq. (iii)	
	 	 When x = 3	 	 When x = -1
	 	 y = 4 - 3x	 	 	 y = 4 - 3x
	 	 y = 4 - 3 (3) = 4 - 9	 y = 4 - 3(-1) = 4 + 3
	 	 y = -5	 	 	 y = 7
	 	 ∴ The ordered pairs are (3, -5) and (-1,7)
	 	 Thus, the solution set is {(3, -5), (-1, 7)}

(b) when both the equations are quadratic.
The method to solve the equations is illustrated through the
following examples.

                                           29
   24   25   26   27   28   29   30   31   32   33   34