Unit-11

CHORDS AND ARCS

In this unit, students will learn

- A If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chords are equal.
- If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent.
- Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
- If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

11.1(i) If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.

Given: ABCD and A'B'C'D' are two congruent circles

with centres O and O' respectively. So that $\widehat{mADC} = \widehat{mA'D'C'}$

To prove: $m\overline{AC} = m\overline{A'C'}$

Construction: Join O with A, O with C, O' with A' and O' with C'.

So that we can form Δ^s *OAC* and *O'A'C'*.

Proof:				
Statements	Reasons			
In two equal circles ABCD and A'B'C'D'	Given			
with centres O and O' respectively.				
$\widehat{mADC} = \widehat{mA'D'C'}$	Given			
$\therefore \qquad m \angle AOC = m \angle A'O'C'$	Central angles subtended by			
	equal arcs of the equal circles.			
Now in $\triangle AOC \leftrightarrow \triangle A'O'C'$				
$m\overline{OA} = m\overline{O'A'}$	Radii of equal circles			
$m \angle AOC = m \angle A'O'C'$	Already Proved			
$m\overline{OC} = m\overline{O'C'}$	Radii of equal circles			
$\therefore \qquad \Delta AOC \cong \Delta A'O'C'$	$S.A.S \cong S.A.S$			
and in particular $m\overline{AC} = m \overline{A'C'}$				
Similarly we can prove the theorem in the same circle.				

Converse of Theorem 1

11.1(ii) If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent. In equal circles or in the same circle, if two chords are equal, they cut off equal arcs.

Given: ABCD and A'B'C'D' are two congruent circles with centres O and O' respectively. So that chord $m\overline{AC} = m\overline{A'C'}$.

To prove: $m\widehat{ADC} = m\widehat{A'D'C'}$

Construction: Join O with A, O with C, O' with A' and O' with C'.

	Statements	Reasons
In	$\Delta AOC \leftrightarrow \Delta A'O'C'$	
	$m\overline{OA} = m\overline{O'A'}$	Radii of equal circles
	$m\overline{OC} = m\overline{O'C'}$	Radii of equal circles
	$m \overline{AC} = m \overline{A'C'}$	Given
.·.	$\Delta AOC \stackrel{\sim}{=} \Delta A'O'C'$	$S.S.S \cong S.S.S$
\Rightarrow	$m\angle AOC = m\angle A'O'C'$	
Hence	$\widehat{mADC} = \widehat{mA'D'C'}$	Arcs corresponding to equal central angles.

Example 1: A point P on the circumference is equidistant from the radii \overline{OA} and OB.

Prove that
$$m\widehat{AP} = m\widehat{BP}$$

Given: AB is the chord of a circle with centre O. Point P on the circumference of the circle is equidistant from the

radii
$$\overline{OA}$$
 and \overline{OB} so that $m\overline{PR} = m\overline{PS}$.

To prove:
$$m\widehat{AP} = m\widehat{BP}$$

Construction: Join O with P. Write $\angle 1$ and $\angle 2$ as shown in the figure.

Proof:

	Statements	Reasons
In ∠	rt $\triangle OPR$ and $\angle rt \triangle OPS$	
	$m \ \overline{OP} = m \ \overline{OP}$	Common
	$m \overline{PR} = m \overline{PS}$	Point <i>P</i> is equidistance from radii (Given)
<i>:</i> .	$\triangle OPR \cong \triangle OPS$	$(\operatorname{In} \angle rt\Delta^s \qquad \text{H.S} \cong \operatorname{H.S})$
So	$m \angle 1 = m \angle 2$	Central angles of a circle
\Rightarrow	Chord $AP \cong Chord BP$	
Heno	ce $m\widehat{AP} = m\widehat{BP}$	Arcs corresponding to equal chords in a circle.

THEOREM 3

11.1(iii) Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).

Given: ABC and A'B'C' are two congruent circles with centres O and O' respectively.

So that
$$\overline{AC} = \overline{A'C'}$$

To prove: $\angle AOC \cong \angle A'O'C'$

Construction: Let if possible $m \angle AOC \neq m \angle A'O'C'$ then consider $\angle AOC \cong \angle A'O'D'$

Proof:

	Statements	Reasons		
	∠AOC <u>~</u> ∠A'O'D'	Construction		
<i>:</i> .	$\widehat{AC} \cong \widehat{A'D'}$	(i)	Arcs subtended by equal Central angles in congruent circles	
	$m\overline{AC} = m\overline{A'D'}$	(ii)	Using Theorem 1	
But	$m\overline{AC} = m\overline{A'C'}$	(iii)	Given	
:.	mA'C' = mA'D'		Using (ii) and (iii)	
Which	is only possible, if C' concides w			
Hence	$m\angle A'O'C' = m\angle A'O'D'$	(iv)		
But	$m\angle AOC = m\angle A'O'D'$	(v)	Construction	
\Rightarrow	$m\angle AOC = m\angle A'O'C'$		Using (iv) and (v)	

Corollary 1. In congruent circles or in the same circle, if central angles are equal then corresponding sectors are equal.

Corollary 2. In congruent circles or in the same circle, unequal arcs will subtend unequal central angles.

Example 1: The internal bisector of a central angle in a circle bisects an arc on which it stands.

Solution: In a circle with centre O. \overline{OP} is an internal bisector of central angle AOB.

To prove: $\widehat{AP} \cong \widehat{BP}$

Construction: Draw \overline{AP} and \overline{BP} , then write $\angle 1$ and $\angle 2$ as shown in the figure.

0011				
	Statements	Reasons		
	In $\triangle OAP \leftrightarrow \triangle OBP$			
	$m \ \overline{OA} = m \ \overline{OB}$	Radii of the same circle		
	$m \angle 1 = m \angle 2$	Given \overline{OP} as an angle bisector of		
		∠AOB		
and	$m \ \overline{OP} = m \ \overline{OP}$	Common		
		$(S.A.S \cong S.A.S)$		

$$\triangle OAP \cong \triangle OBP$$

Hence
$$\overline{AP} \cong \overline{BP}$$

$$\Rightarrow \widehat{AP} \stackrel{\sim}{=} \widehat{BP}$$

Arcs corresponding to equal chords in a circle.

Example 2: In a circle if any pair of diameters are \perp to each other then the lines joining its ends in order, form a square.

Given: \overline{AC} and \overline{BD} are two perpendicular diameters of a circle with centre O. So ABCD is a quadrilateral.

To prove: *ABCD* is a square

Construction: Write $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$ and $\angle 6$ as shown in the figure.

	Statements	Reasons		
Ā	\overline{C} and \overline{BD} are two \perp diameters of a circle with centre O	Given		
•	$m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = 90^{\circ}$	Pair of diameters are \perp to each other.		
·	$m\overrightarrow{AB} = m\overrightarrow{BC} = m\overrightarrow{CD} = m\overrightarrow{DA}$	Arcs opposite to the equal central angles in a circle.		
=	$\Rightarrow m \overline{AB} = m \overline{BC} = m\overline{CD} = m\overline{DA} $ (i)	Chords corresponding to equal arcs.		
N	Moreover $m \angle A = m \angle 5 + m \angle 6$			
	$=45^{\circ}+45^{\circ}=90^{\circ}$ (ii)			
S	imilarly $m \angle B = m \angle C = m \angle D = 90^{\circ}$ (iii)			
H	Ience ABCD is a square	Using (i), (ii) and (iii).		

THEOREM 4

11.1(iv) If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

Given: ABCD and A'B'C'D' are two congruent circles with centres

O and O' respectively. \overline{AC} and $\overline{A'C'}$ are chords of circles ABCD and A'B'C'D' respectively and $m \angle AOC = m\angle A'O'C'$

To prove: $m\overline{AC} = m\overline{A'C'}$

	Statements	Reasons		
In	$\triangle OAC \longleftrightarrow \triangle O'A'C'$			
	$m\overline{OA} = m\overline{O'A'}$	Radii of congruent circles		
	$m\angle AOC = m\angle A'O'C'$	Given		
	$m\overline{OC} = m\overline{O'C'}$	Radii of congruent circles		
<i>∴</i>	$\Delta OAC \cong \Delta O'A'C'$	$SAS \cong SAS$		
Hence	$m\overline{AC} = m\overline{A'C'}$			

1.	in a circle two t	equai uia	incleis AD and		nersect each	ouiei.		
	Prove that $m \overline{A} \overline{A}$	$\bar{D} = m \ \overline{BC}$	5.					
2.	In a circle prove that the arcs between two parallel and equal chords are equal.							
3.	Give a geometric proof that a pair of bisecting chords are the diameters of a circle.							
4.	If C is the mid point of an arc ACB in a circle with centre O . Show that							
	line segment O	•						
	· ·			TOT		TOTA 1	4	
			LANEOU		LAERU	19F 1	.1	
1.	Multiple Choice	_						
	Four possible a		_	the fol	lowing que	stions.		
(*)	Tick (✓) the co			1 .	- C (O O TT) -	12.1		1 .
(i)	A 4 cm long chis:	iora subi	ands a central	angie	or ou°. The	radiai se	egment of this	circie
	(a) 1	(b)	2	(c)	3	(<i>d</i>)	4	
(ii)	` '	` '		` /	=	\ /		entral
(11)	The length of a chord and the radial segment of a circle are congruent, the central angle made by the chord will be:						Circiai	
	(a) 30°	(b)	45°	(c)	60°	(<i>d</i>)	75°	
(iii)	Out of two con	` '	rcs of a circle. i	` '		` '	ngle of 30° the	en the
(***)	other arc will su						mgre er e e une	
	(a) 15°	(<i>b</i>)	30°	(c)	45°	(<i>d</i>)	60°	
(iv)	An arc subtend	ls a centr	al angle of 40	o then	the corresp	onding c	hord will subt	end a
	central angle of	. .						
	(a) 20°	(<i>b</i>)	40°	(c)	60°	(<i>d</i>)	80°	
(v)	A pair of chord	s of a cir	cle subtending	two co	ongruent cei	ntral angl	es is:	
	(a) congruer	(b)	incongruent	(<i>c</i>)	over lapp	ing (d)	parallel	
(vi)	If an arc of a c	ircle sub	tends a central	angle	of 60°, ther	the cor	esponding cho	ord of
	the arc will mal	ke the ce	ntral angle of:					
	(a) 20°	(b)	40°	(<i>c</i>)	60°	(<i>d</i>)	80°	
(vii)	The semi circui	mference	and the diame	ter of		subtend	a central angle	e of:
	(a) 90°	(<i>b</i>)	180°	(<i>c</i>)	$270^{\rm o}$	(<i>d</i>)	360°	
(viii)	The chord leng	th of a ci	rcle subtending	g a cen	tral angle of	f 180° is	always:	
	(a) less than	radial se	gment	(<i>b</i>)	equal to the	he radial	segment	
	(c) double of	f the radi	al segment	(<i>d</i>)	none of th	nese		
(ix)	If a chord of a		otends a centra	l angle	of 60°, the	n the len	gth of the chor	d and
	the radial segm							
	(a) congruer	` '	incongruent	(c)	parallel	(d)	perpendicula	ır
(x)		The arcs opposite to incongruent central angles of a circle arc always:						
	(a) congruer	(b)	incongruent	(c)	parallel	(d)	perpendicula	ır

- The boundary traced by a moving point in a circle is called its circumference whereas any portion of the circumference will be known as an arc of the circle.
- The straight line joining any two points of the circumference is called a chord of the circle.
- The portion of a circle bounded by an arc and a chord is known as the segment of a circle.
- The circular region bounded by an arc of a circle and its two corresponding radial segments is called a sector of the circle.
- A straight line, drawn from the centre of a circle bisecting a chord is perpendicular to the chord and conversely perpendicular drawn from the centre of a circle on a chord, bisects it.
- If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chords are equal.
- If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent.
- Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
- If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.