Page 7 - 11-Math-10 Trigonometric Identities
P. 7

110. .QTuriagdornaotmiceEtrqicuIadteionntisties                                        eeLLeeaarrnn..PPuunnjjaabb

                =                                0 . cosθ -1 . sin θ          sin 2π = 0
                                                                               cos 2π = 1					
			

	                        =                       - sin θ 	 		                  (viii)
			

9)	 tan(a + b ) =                                sin(a + b=) sina cos b + cosa sin b
                                                 cos(a + b ) cosa cos b - sina sin b 						
                                                                                                  	

         sina cos b + cosa sin b                  Dividing 
                                                 neumerator and
      =  cosa  cos b     cosa  cos b              denuminator 
         cosa  cos b     sina  sin b
	                     -
         cosa cos b cosa cos b                   -cos a cos b             
                                                                            
	

	     ∴  tan(a + b )        =tana + tan b                                      (ix)
                              1- tana tan b

10)	 tan(a - b )= sin(a -=b ) sina cos b - cosa sin b
                               cos(a - b ) cosa cos b + sina sin b 						

      sina cos b - cosa sin b  Dividing 
      cosa cos b cosa cos b                      neumerator and
   =  cosa cos b + sina sin b                     denuminator 

      cosa cos b cosa cos b                                              			

      ∴  tan(a - b )        =tana - tan b                                      (x)
                                1+ tana tan b
                                                 	

	

10.3 Trigonometric Ratios of Allied Angles

	 The angles associated with basic angles of measure θ to a right angle or its multiples
are called allied angles. So, the angles of measure 90° ± θ , 180° ± θ , 270° ± θ , 360° ± θ , are
known as allied angles.
	 Using fundamental law, cos(a - b ) = cos a cos b + sin a sin b and its deductions, we
derive the following identities:

                                                                                                                   version: 1.1

                                                                      7
   2   3   4   5   6   7   8   9   10   11   12