Page 32 - 11-Math-12 Application of Trigonometry
P. 32
112. .QAupapdlircaattiiconEqofuTartiigoonnsometry eeLLeeaarrnn..PPuunnjjaabb
Similarly, we can prove that
=R =2 sbin b and R R.c
2 sin g
Hence =R =a =b c
2 sina 2 sin b 2 sin g
a) Deduction of Law of Sines:
We know t=hat R =a =b c
2sin a 2sin b 2 sin g
⇒ a =sinb b =sinc g =2R
sin a =sinb b =sinc g , which is the law of sines.
a
∴ sin a
b) Prove that: R = abc
4∆
Proof: We know that: R = a
2sin a
=⇒ R 2 .2 sinaa2=cos a2 ï£ï£«ï£¬ï‘ sin a 2 sin a cos a 
2 2 
=a
s(s - b)(s - c) s(s - a) (by half angle formulas)
4 bc bc
= abc
4 s(s - a)(s - b)(s - c)
∴ R= abc ( )ï‘=∆ s(s - a)(s - b)(s - c)
4∆
version: 1.1
32