Page 32 - 11-Math-12 Application of Trigonometry
P. 32

112. .QAupapdlircaattiiconEqofuTartiigoonnsometry                                              eeLLeeaarrnn..PPuunnjjaabb

	 Similarly, we can prove that

	   =R =2 sbin b and R                                                               R.c
                                                                                   2 sin g 	

	 Hence    =R                                      =a =b                       c
                                                        2 sina  2 sin b     2 sin g

a) Deduction of Law of Sines:

	  We know t=hat R        =a                            =b         c
                          2sin a                        2sin b  2 sin g

        ⇒       a         =sinb b =sinc g =2R
              sin a       =sinb b =sinc g , which is the law of sines.
	
                a
       ∴      sin a

	

b) Prove that: R =                                 abc
                                                   4∆

   Proof: We know that: R =                                a
                                                        2sin a 			

=⇒ R          2 .2 sinaa2=cos a2  sin a                              2  sin a  cos a  
                                                                                2      2  

           =a
              s(s - b)(s - c)                           s(s - a) (by half angle formulas)
		         4        bc                                    bc

		         = abc
                 4 s(s - a)(s - b)(s - c)

	∴         R= abc                                               ( )=∆ s(s - a)(s - b)(s - c)
                      4∆

                                                                                                                       version: 1.1

                                                                32
   27   28   29   30   31   32   33   34   35   36   37