Page 8 - 11-Math-14 Solutions of Trignometric Equation
P. 8

114. .QSuoaludtriaontiscoEfqTuriagtoiononms etric Equations                        eeLLeeaarrnn..PPuunnjjaabb

    	 ⇒ 1 - 2cos x + cos2 x =3sin2 x

    	 ⇒ 1 - 2cos x + cos2 x = 3(1 - cos2 x)

	 ⇒ 4cos2 x - 2cos x - 2 =0

	 ⇒ 2cos2 x - cos x -1 =0

	 ⇒ (2cos x +1)(cos x -1) =0

	     ⇒   cos  x  =- 1   or  cos x =1
                      2

i.    If  cos x =  -1
                     2

	     Since cos x is -v e in II and III Quadrants with the reference angle  x=p
                                                                                3

      ⇒ x =p - p = 2p              and	 x =p + p = 4p ,	 where x U [0, 2p]
	 3 3	                                                       33

	Now x = 4p does not satisfy the given equation (i).
                     3

	 ∴ x =4p is not admissible and so x = 2p is the only solution.
                   33

	 Since 2p is the period of cos x

	     ∴ General         value  of  x  is  2p  + 2np          ,  nUZ
ii.	  If cos x = 1                         3

	 ⇒ x = 0 and x = 2p where x U [0, 2p]

	 Now both csc x and cot x are not defined for x = 0 and x = 2

	 ∴ x = 0 and x = 2 are not admissible.

	     Hence solution set =         2p    +  2np            , nUZ
                                                 
                                     3           

                                                                                   version: 1.1

                                                                8
   3   4   5   6   7   8   9