Page 8 - 11-Math-14 Solutions of Trignometric Equation
P. 8
114. .QSuoaludtriaontiscoEfqTuriagtoiononms etric Equations eeLLeeaarrnn..PPuunnjjaabb
⇒ 1 - 2cos x + cos2 x =3sin2 x
⇒ 1 - 2cos x + cos2 x = 3(1 - cos2 x)
⇒ 4cos2 x - 2cos x - 2 =0
⇒ 2cos2 x - cos x -1 =0
⇒ (2cos x +1)(cos x -1) =0
⇒ cos x =- 1 or cos x =1
2
i. If cos x = -1
2
Since cos x is -v e in II and III Quadrants with the reference angle x=p
3
⇒ x =p - p = 2p and x =p + p = 4p , where x U [0, 2p]
3 3 33
Now x = 4p does not satisfy the given equation (i).
3
∴ x =4p is not admissible and so x = 2p is the only solution.
33
Since 2p is the period of cos x
∴ General value of x is 2p + 2np , nUZ
ii. If cos x = 1 3
⇒ x = 0 and x = 2p where x U [0, 2p]
Now both csc x and cot x are not defined for x = 0 and x = 2
∴ x = 0 and x = 2 are not admissible.
Hence solution set = 2p + 2np  , nUZ
 
 3 
version: 1.1
8