Page 21 - 11-Math-3 Matrices and Determinants
P. 21
31.. MQautaridcreastiacndEqDueatetiromninsants eeLLeeaarrnn..PPuunnjjaabb
1× 2 + (-1) ×1 + 0 × 3 1× 0 + (-1) × 4 + 0 × 0 1×1 + (-1) × 2 + 0 × 6 
= 2 × 2 + 3×1 + (-1) × 3 2 × 0 + 3× 4 + (-1) × 0 2 ×1 + 3× 2 + (-1) × 6
1× 0 + (-2) × 4 + 3× 0 1×1 + (-2) × 2 + 3× 6
1× 2 + (-2) ×1 + 3× 3
(2)
1 -4 -1
= 4 12 
2 
9 -8 15
Thus from (1) and (2), AB ≠BA
Note: Matrix multiplication is not commutative in general
 2 -1 3 0 
 0 4 -2 ,then find AAt and (At).
Exam=ple 2: If  1
-3 5 2 -1
Solution : Taking transpose of A, we have
 2 1 -3
-1 
3 0 5 
At = 4 2  , so
 0 -2 -1

2 -1 3 0 2 1 -3
0 4 -2 -1 0 
=AAt  1 5 2 -1 4 5 
 -2
-3 3 2
 -1
 0
 4+1+9+0 2 + 0 +12 + 0 -6 - 5 + 6 + 0
 1 + 0 +16 + 4 -3 + 0 + 8 + 2
=  2 + 0 + 12 + 0 -3 + 0 + 8 + 2 9 + 25 + 4 +1
-6 - 5 + 6 + 0
14 14 -5
= 14 
21 7 
-5 7 39
version: 1.1
21