Page 21 - 11-Math-3 Matrices and Determinants
P. 21

31.. MQautaridcreastiacndEqDueatetiromninsants                                                           eeLLeeaarrnn..PPuunnjjaabb

  1× 2 + (-1) ×1 + 0 × 3                          1× 0 + (-1) × 4 + 0 × 0     1×1 + (-1) × 2 + 0 × 6 
= 2 × 2 + 3×1 + (-1) × 3                         2 × 0 + 3× 4 + (-1) × 0     2 ×1 + 3× 2 + (-1) × 6
                                                   1× 0 + (-2) × 4 + 3× 0      1×1 + (-2) × 2 + 3× 6
  1× 2 + (-2) ×1 + 3× 3
                                                                                              (2)
1 -4 -1
= 4 12                  
                       2  

9 -8 15

Thus from (1) and (2), AB ≠ BA

Note: Matrix multiplication is not commutative in general

                 2 -1 3 0 
                               0 4 -2 ,then find AAt and (At).
Exam=ple 2: If        1

                -3 5 2 -1

Solution : Taking transpose of A, we have

                           2 1 -3
                          -1                     
                          3       0            5  
                At     =           4            2    ,  so

                            0     -2 -1
                          

                          2       -1           3     0     2    1   -3
                                   0            4     -2   -1  0        
=AAt                        1     5            2     -1         4     5  
                                                                  -2
                          -3                               3          2
                                                                      -1
                                                               0

                        4+1+9+0                         2 + 0 +12 + 0      -6 - 5 + 6 + 0
                                                        1 + 0 +16 + 4      -3 + 0 + 8 + 2
                    =    2  +  0  +  12        +  0     -3 + 0 + 8 + 2     9 + 25 + 4 +1

                       -6 - 5 + 6 + 0

                       14 14 -5
                    = 14                         
                                   21           7  

                       -5 7 39

                                                                                                         version: 1.1

                                                                       21
   16   17   18   19   20   21   22   23   24   25   26