Page 14 - 11-Math-4 Quadratic Equations
P. 14

14.. QQuuaaddrraattiiccEEquqautaiotinosns                                 eeLLeeaarrnn..PPuunnjjaabb

			 x - 3 =0 ⇒ x-3 = 0 ⇒x = 3                  6x +13 =0

	 Now solve the equation x + 7 + x + 2 -

	 ⇒	 x + 7 + x + 2= 6x +13

	 ⇒ x + 7 + x + 2 + 2 (x + 7)(x + 2) = 6x +13 (Squaring both sides)

	 ⇒ 	 2 (x + 7)(x + 2) = 4x + 4

	 ⇒ 	 x2 + 9x + 14 = 2x + 2
	 ⇒ 	 x 2 + 9x + 14 = 4x 2 + 8x + 4 (Squaring both sides again)
	 ⇒ 	 3x2 - x - 10 = 0
	 ⇒	 (3x + 5)(x - 2 ) = 0

	 ⇒ x = - 5 ,2
           	3

	 Thus possible roots are 3, 2, - 5 .
	3
	 On verification, it is found that - 5 is an extraneous root. Hence solution set = {2, 3}

                                                      3

iv)	 The Equations of the form: ax2 + bx + c + px2 + qx + r = mx + n
	 where, (mx + n) is a factor of (ax2 + bx + c) - (px2 + qx + r)

Example 4: Solve the equation: 3x2 - 7x - 30 - 2x2 - 7x - 5 =x - 5

Solution: Let 3x2 =- 7x - 30 a and 2x=2 - 7x - 5 b
		 Now	 a2 - b2 = ( 3x2 - 7x - 30 ) - (2x2 - 7x - 5)
			 a2 - b2 = x2 -25 							(i)
	 The given equation can be written as:
		a - b = x - 5						(ii)

	 (a + b)(a - b) = (x + 5)(x - 5)                    [From (i) and (ii)]
	 a-b                                      x - 5 				

		⇒	 a + b = x + 5					(iii)

			    2a = 2x					[From (ii) and (iii)]

		⇒ 	  a=x

                                                                          version: 1.1

                                           14
   9   10   11   12   13   14   15   16   17   18   19