Page 37 - 11-Math-4 Quadratic Equations
P. 37

41.. QQuuaaddrraatticicEqEuqautaiotinosns                                                      eeLLeeaarrnn..PPuunnjjaabb
                                                                                                 version: 1.1
Example 2: Solve the following equations:

		   x2 + y2 +=4x 1 and x2 + (y -=1)2 10

Solution: The given system of equations is

     x2 + y2 + 4x =1                                      (i)
                                                           (ii)
		     x  2  +  y2  -                    2y  +1  =10

	 Subtraction gives,

	 4x + 2 y + 8 =0 						
	 ⇒ 2x + y + 4 =0
                                                        		
	 ⇒ y =-2x - 4
	 Putting the value of y in equation (i),                   	 (iii)

		 x2 + ( - 2x - 4)2 + 4x =1⇒ x2 + 4x2 + 16x + 16 + 4x =1

	 ⇒ 	 5x2 + 20x +15 =0 ⇒ 	 x + 4x + 3 =0
	 ⇒ 	 (x + 3)(x + 1) = 0                                ⇒ 	 x = -3 or x = -1

	 Putting x = -3 in (iii), we get; y =-2( - 3) - 4 =6 - 4 =2

	Putting x = -1 in (iii), we get; y =-2( -1) - 4 =2 - 4 =-2

	 Hence solution set = {( - 3, 2),( -1, - 2)}.

					Exercise 4.8

	 Solve the following systems of equations:

1.	 2x - y =4; 2x2 - 4xy - y2 =6 	 2.	 x + y =5 ; 	 x2 + 2 y2 =17

3.	  3x + 2 y =7; 3x=2 25 + 2 y2 	                      4. 	 x + y= 5; 2 + 3= 2, x ≠ 0, y ≠ 0
                                                                         xy

5.	 x + y = a + b; a + b = 2                            6. 	 3x + =4 y 25; 3 +=4 2
                        xy                                                      xy

7. 	(x - 3)2 + y2 =5;		 2x= y + 6 		

                                                        37
   32   33   34   35   36   37   38   39   40   41   42