Page 23 - 11-Math-6 Sequences and Series
P. 23
61.. SQeuqaudenracteiscaEnqduSaetriioenss eeLLeeaarrnn..PPuunnjjaabb
Using an = a1rn-1 we have,
= a5 a1=r5-1 i.e., a5 a1r 4 (i)
Now substituting the values of a5 and a1 in (i) we have
=1 2=r4 or r4 1 (ii)
2 4
Taking square root of (ii), we get,
r2 = ± 1
2
So, we have, r2 =1 or r2 =- 1 =i2 (ï‘ )-1 =i2
2 22
⇒ r =± 1 or r =± 1 i
22
when=r 1, then =G1 2 =1 2,=G2 2ï£ï£«ï£¬ 12=2 1,=G3 2  12=3 1
2 2 ï£ï£¬ 2
when r =-1 , then G1 =2ï£ï£« -21  =- 2,G2 =2ï£ï£« -21 2 =1,G3 =2ï£ï£¬ï£« -21 3 =- 1
2 2
when r =i , then G1 =2 × i =2 i, G2 =2ï£ï£«ï£¬ i 2 =-1, G3 =2ï£ï£« i 3 =- i
2 2 2  2  2
when r =-i , then G1 =2ï£ï£¬ -2i  =- 2 i, G2 =2ï£ï£« -2i 2 =-1, G3 =2ï£ï£«ï£¬ -2i 3 =i
2    2
Note: The real values of r are usually taken but here other cases are considered to widen
the out-look of the students.
Example 3: If a, b, c and d are in G.P. show that a + b, b + c, c + d are in G.P.
Solution: Since a, b, c are in G.P therefore, version: 1.1
ac = b2 (i)
Also b, c, d are in G.P., so we have
bd = c2 (ii)
23