Page 23 - 11-Math-6 Sequences and Series
P. 23

61.. SQeuqaudenracteiscaEnqduSaetriioenss                                                                            eeLLeeaarrnn..PPuunnjjaabb

 	Using an = a1rn-1 we have,

=		 a5 a1=r5-1 i.e., a5 a1r 4 						 (i)
 	 Now substituting the values of a5 and a1 in (i) we have

=1 2=r4 or r4 1                                                                                             (ii)
		 2                                              4 							

	 Taking square root of (ii), we get,

		 r2 = ± 1
                         2

So, we have, r2 =1                         or r2 =- 1 =i2          ( )-1 =i2
                         2                              22

            ⇒ r =± 1 or r =± 1 i
	 22

when=r  1,        then  =G1                2 =1       2,=G2      2 12=2  1,=G3  2     12=3    1
        2                                      2                                                      2

when r =-1 , then       G1 =2 -21  =- 2,G2                   =2 -21 2  =1,G3 =2 -21 3     =- 1
               2                                                                                                  2

when  r =i ,      then  G1 =2 ×            i          =2  i, G2    =2  i    2  =-1, G3   =2  i   3  =- i
            2                              2                              2                       2           2

when r =-i ,      then  G1  =2 -2i                =- 2  i, G2  =2 -2i   2  =-1, G3   =2 -2i  3  =i
               2                                                                                          2

Note: The real values of r are usually taken but here other cases are considered to widen
         the out-look of the students.

Example 3: If a, b, c and d are in G.P. show that a + b, b + c, c + d are in G.P.

Solution: Since a, b, c are in G.P therefore,                                                                        version: 1.1
		 ac = b2 									(i)
	Also b, c, d are in G.P., so we have
		 bd = c2 									(ii)

                                                     23
   18   19   20   21   22   23   24   25   26   27   28