Page 13 - 11-Math-7 Permutation Combination and Probability
P. 13

71.. PQeurmadurtaattiiconECqoumatbioinnastion and Probability                                           eeLLeeaarrnn..PPuunnjjaabb

   ⇒             ncr ×=r           (  n  n!  )!  ∴=n cr      n!
                                         -r
                                                         r!(n - r )!

Which completes the proof.
Corollary:

                               i) If r = n, then                        =ncn  n!(  n!  r=)!    =n!   1
                                                                                   n-          n!0!

                               ii) If r = 0, then                       =nc0  0!(  n!  0=)!    =n!   1
                                                                                   n-          0!n!

7.3.1 Complementary Combination

	  Prove         that:    nCr  =   Cn
                                       n-r

Proof: If from n different objects, we select r objects then (n - r) objects are left.	

		Corresponding to every combination of r objects, there is a combination of (n - r)

objects and vice versa.

	 Thus the number of combinations of n objects taken r at a time is equal to the number

of combinations of n objects taken (n - r) at a time.

        ∴ nCr =nCn-r

Other wise:      cn       =              n!
                     n-r
                                (n - r)!(n - n + r )!

        =             (=n -nr!)!r!           n!

                                         r!(n - r )!

        ⇒     cn      =ncr
                 n-r

Note:   This  result      will  be       found     useful  in    evaluating   nCr whnecnr  r>  n.
                                                                                               2

   e.g  Cl2      =    C12                =  12 c2  =  (12).(11)  =  (6). (11) =66
             10             12-10                         2

                                                                                                        version: 1.1

                                                                    13
   8   9   10   11   12   13   14   15   16   17   18