Page 11 - 11-Math-8 Mathematical Inductions and Binomial Theorem
P. 11

81.. MQautahdermataitcicEaql Iunadtuiocntisons and Binomial Theorem                                                 eeLLeeaarrnn..PPuunnjjaabb

19.	 12 + 32 + 52 + .... + (2n -1)2 =n(4n2 -1)
                                               3

20.	    3    +    4    +    5    +  ....  +    n+  2     = n4+  3
        3         3         3                   3                   
                                                                    

21.	 Prove by mathematical induction that for all positive integral values of n

	 i)	 n2 + n is divisible by 2.                                            ii) 5n - 2” is divisible by 3.

	 iii)	5n -1 is divisible by 4.		                                              iv)	 8 x 10n - 2 is divisible by 6.

	v)	n3- n is divisible by 6.

22.	  1  +     1     + .... +    1     =  1  1  -  1   
      3        32                3n       2           3n  

23.	 12 - 22 + 32 - 42 + .... + (-1)n-1 .n2 =(-1)n-1.n(n + 1) 	
                                                           2

24.	 13 + 33 + 53 + .... + (2n -1=)3 n2[2n2 -1]

25.	 x + 1 is a factor of x2n -1;(x ≠ -1)
26.	 x - y is a factor of xn - yn ; (x ≠ y)
27.	 x + y is a factor of x2n-1+ y2n-1 (x ≠ -y )
28.	 Use mathematical induction to show that
	 1 + 2 + 22 +.... + 2n = 2n+1 - 1 for all non-negative integers n.
29.	 If A and B are square matrices and AB = BA, then show by mathematical induction that
	 ABn = BnA for any positive integer n.
30.	 Prove by the Principle of mathematical induction that n2 - 1 is divisible by 8 when n is
	 an odd positive integer.
31.	 Use the principle of mathematical induction to prove that lnxn = n lnx for any integer

	 n 8 0 if x is a positive number. Use the principle of extended mathematical induction

	 to prove that:

32.	 n! > 2n - 1 for integral values of n 8 4 .	
33.	 n2 > n + 3 for integral values of n 8 3.
34.	 4n > 3n + 2n-1 for integral values of n 8 2 .

35.	 3n < n! for integral values of n > 6 .

36.	 n! > n2 for integral values of n 8 4 .

                                                                                                                   version: 1.1

                                                                               11
   6   7   8   9   10   11   12   13   14   15   16