Page 23 - 11-Math-9 Fundamentals of Trigonometry
P. 23

91.. FQuunaddarmaetinctaElqs uoaf tTiroingosnometry                                 eeLLeeaarrnn..PPuunnjjaabb
                                                                                      version: 1.1
half the hypotenuse.
		Let c = 2 then b = 1

	 \	 By Pythagoras theorem ,

	 \				 a2 + b2 =c2
	 ⇒ a2 =c2 - b2

                                     = 4-1= 3
                            ⇒ a =3

	 \ Using triangle of fig.3, with a = 3, , b = 1 and c = 2

    sin 60= a= 3 ;                                  csc 60=        sin160=   2;
               c2                                    sec 60=                   3
                                                     cot 60=        cos160=  2;
    cos 60= b= 1 ;                                                  tan160=   1.
               c2                                                                3

    tan 60= a= 3;
     b
		

Example 3: Find the values of all the trigonometric functions of

		   (i)	 420°		                                     (ii)	 -7π       (iii)	 19π
                                                               4 		            3

Solution:	 We know that q=+ 2kπ q , where k ∈ Z

	 (i)	 420° = 60°+ 1(360°)		                         (k= 1)

			  = 60°

    ∴ sin 420 =sin 60 = 3 ;                                csc 420 =2
                                 2                                         3

		   cos=420  c=os 60 1 ;                                  se=c 420 2
		   tan=420             2                                  co=t 420 1

               t=an 60 3 ;                                                 3

                                                     23
   18   19   20   21   22   23   24   25   26   27   28