Page 23 - 11-Math-9 Fundamentals of Trigonometry
P. 23
91.. FQuunaddarmaetinctaElqs uoaf tTiroingosnometry eeLLeeaarrnn..PPuunnjjaabb
version: 1.1
half the hypotenuse.
Let c = 2 then b = 1
\ By Pythagoras theorem ,
\ a2 + b2 =c2
⇒ a2 =c2 - b2
= 4-1= 3
⇒ a =3
\ Using triangle of fig.3, with a = 3, , b = 1 and c = 2
sin 60=ï¯ a= 3 ; csc 60=ï¯ sin160=ï¯ 2;
c2 sec 60ï¯= 3
cot 60=ï¯ cos160=ï¯ 2;
cos 60=ï¯ b= 1 ; tan160=ï¯ 1.
c2 3
tan 60=ï¯ a= 3;
b
Example 3: Find the values of all the trigonometric functions of
(i) 420° (ii) -7π (iii) 19π
4 3
Solution: We know that q=+ 2kπ q , where k ∈ Z
(i) 420° = 60°+ 1(360°) (k= 1)
= 60°
∴ sin 420ï¯ =sin 60ï¯ = 3 ; csc 420ï¯ =2
2 3
cos=420ï¯ c=os 60ï¯ 1 ; se=c 420ï¯ 2
tan=420ï¯ 2 co=t 420ï¯ 1
t=an 60ï¯ 3 ; 3
23