Page 30 - 12-Math-1 FUNCTIONS AND LIMITS
P. 30

11.. FQuunacdtiroantsicaEnqduLaimtioitnss                                                                                       eeLLeeaarrnn..PPuunnjjaabb

                  1<      q                <    1                             0  <  q  <  p  
                         sinq                 cosq                                       2  
	
                         sinq                                                              sinq
   i.e.,             1>   q                > cosq                    or        cosq     <   q     <1

			               when q " 0, 	cos q " 1
Since Sin q is sandwitched between 1 and a quantity approaching 1 itself.	
     q

So, by the sandwitch theorem, it must also approach 1.

	i.e., lim sinq = 1
            q →0 q

Note: The same result holds for -p/2 < q < q

Example 6:	Evaluate: lim                                          sin 7q
                                                            q →0    q

Solution: 	 Observe the resemblance of the limit with lim sinq = 1
                                                                                                        q →0 q
		Let 	x = 7q 		 so that q = x/7

		when q " 0 	 , 	 we have x " 0

	 ∴ Lim sin7q = Lim sin x = 7 Lim sin x = (7)(1) = 7
            q →0 q                         x→0 x / 7                       x→0 x

Example 7:	Evaluate: Lim 1- cosq
                                   q →0 q

Solution:	  1- cosq          =  1          -  cosq  .1            +  cosq
               q                              q     1             +  cosq

                             =   1 - cos2 q                          =     sin2 q          =  sinq     sinq   1          
                                                                                                       q     1+ cosq  
		          	                   q (1+ cosq )                            q (1+ cosq )

	∴          lim   1  -  cos  q  = lim sinq                        lim     sinq    lim       1
                        q           q →0                                   q            1+ cosq
            q →0                                                  q →0            q →0

			                             = (0)(1)( 1 )
                                          1+1

                                = (0)

                                                                                                                                version: 1.1

                                                                                     30
   25   26   27   28   29   30   31   32   33   34   35