Page 30 - 12-Math-1 FUNCTIONS AND LIMITS
P. 30
11.. FQuunacdtiroantsicaEnqduLaimtioitnss eeLLeeaarrnn..PPuunnjjaabb
1< q < 1  0 < q < p 
sinq cosq ï£¬ï£ 2 
sinq sinq
i.e., 1> q > cosq or cosq < q <1
when q " 0, cos q " 1
Since Sin q is sandwitched between 1 and a quantity approaching 1 itself.
q
So, by the sandwitch theorem, it must also approach 1.
i.e., lim sinq = 1
q →0 q
Note: The same result holds for -p/2 < q < q
Example 6: Evaluate: lim sin 7q
q →0 q
Solution: Observe the resemblance of the limit with lim sinq = 1
q →0 q
Let x = 7q so that q = x/7
when q " 0 , we have x " 0
∴ Lim sin7q = Lim sin x = 7 Lim sin x = (7)(1) = 7
q →0 q x→0 x / 7 x→0 x
Example 7: Evaluate: Lim 1- cosq
q →0 q
Solution: 1- cosq = 1 - cosq .1 + cosq
q q 1 + cosq
= 1 - cos2 q = sin2 q = sinq  sinq  1 
ï£¬ï£ q ï£ï£¬ 1+ cosq 
q (1+ cosq ) q (1+ cosq )
∴ lim 1 - cos q = lim sinq lim sinq lim 1
q q →0 q 1+ cosq
q →0 q →0 q →0
= (0)(1)( 1 )
1+1
= (0)
version: 1.1
30