Page 51 - 12-Math-7 Vectors
P. 51
21.. DQifufaerdernattiiactEioqnuations eeLLeeaarrnn..PPuunnjjaabb
version: 1.1
When y ∈  - π ,0  ,cosec y and cot y are negative
ï£ï£¬ 2 
As cosec y = x, so x is negative in this case
and cot y = - cosec2 y -1 = - x2 -1 when x < -1
-1
x - x2 -1
( )Thu=s ddx Co sec-1 x ( x < -1)
-1
= (-x) x2 -1 ( x < -1)
ddx co sec-1 x  = - | x | 1 for x ∈[-1,1]'
x2 -1
Proof of (5). is left as an exercise
Proof of (6). is similar to that of (4)
Example 1: Find dy if =y x Sin -1ï£ï£¬ï£« x  + a2 + x2
dx a 
Solution: Given that=y x Sin -1  x  + a2 + x2
ï£¬ï£ a 
Differentiating w.r.t. x , we have
( ) =dy d x d  x x  d
dx dx a dx a  dx
 x Sin-1 + a=2 + x2  Sin-1 + a2 + x2 1/ 2

1 . Sin-1 x + x. 1 d  x  1 d1 -1
a dx ï£ï£¬ a  2
( ) ( )= 2 . + . a2 + x2 2 a2 + x2

1 -  x dx
ï£¬ï£ a
51