Page 97 - 12-Math-7 Vectors
P. 97

21.. DQifufaerdernattiiactEioqnuations                                                                  eeLLeeaarrnn..PPuunnjjaabb

		 f '' ( x) =- sin x - 1 (cos 2x) × 2 =- sin x - 2 cos 2x

                                       2

    As   f     ''     π     =-  sin   π    -     2 cosπ =-1 -       2 × (-1) = 2 -1 > 0
                     2              2
	

		  and     f   ''     3π       =-    sin  3π  -  2 cos 3π =-(-1) -                 2 (-1) =1+  2 >0
                      2                  2

	Thus f ( x) has minimum value=s for x π=and x 3π

                                                               22

    As   f  ''     π        =- sin    π  -     2 cos π =- 1 -           2 . 0 =- 1 < 0
                  4                 4              22                             2
	

    and     f  ''     3π        =- sin   3π   -   2  cos  3π  =- 1      -   2 . 0 =- 1 < 0
                     4                 4                2         2                   2
	

	Thus f ( x) has minimum value=s for x π=and x 3π

                                                              44

                                                                EXERCISE 2.9

1. 	 Determine the intervals in which f is increasing or decreasing for the domain
	 mentioned in each case.

	 (i) 	 f ( x) = sin x 		 ;	 x ∈(-π ,π )

	   (ii) 	 f ( x) = cos x 		                           ;	       x  ∈     -π  ,π  
                                                                         2   2  
	 (iii) 	 f ( x)= 4 - x2 		 ;	 x ∈(-2,2)

	 (iv) 	 f ( x) = x2 + 3x + 2 	 ;	 x ∈(-4,1)

2. 	 Find the extreme values for the following functions defined as:

	 (i) 	 f ( x)= 1- x3 			(ii) 	f ( x) = x2 - x - 2
	 (iii) 	 f ( x) = 5x2 - 6x + 2 		 (iv)	 f ( x) = 3x2
	 (v) 	 f ( x) = 3x2 - 4x + 5		 (vi) f ( x) = 2x3 - 2x2 - 36x + 3

                                                                                                        version: 1.1

                                                                          97
   92   93   94   95   96   97   98   99   100   101   102