Page 29 - 12 Math 3
P. 29

31.. IQntueagdraratitoicn Equations                                                                                                        eeLLeeaarrnn..PPuunnjjaabb

				= ∫sin2 x dx - ∫sin2 x cos2 x dx 							

    ∫1     -       cos   2x dx              -   ∫sin2 x    cos2 x dx                      (I)
                   2

	 Integrating ∫ sin2 x cos2 x dx by parts, we have

∫ ∫sin2 x cos2 x dx = cos x sin2 x cos x dx

=   cos         x    sin3       x  -       sin3 x        ×       (- sin x) dx                    [ If f (x) = cos x and
                       3                                                                             g'(x) = sin2 x cos x.
                                          ∫3

   ∫=1 cos x sin3 x + 1 sin4 x dx ..... (II)                                                    then f '(x) = - sin x

      33

                                                                                                and      g(x) = sin2        sin3 x 
                                                                                                                                      
                                                                                                                            3         

Putting the value of ∫ sin2 x cos2 x dx in (I), we obtain,

	  ∫sin4 x dx            =∫ 12 -               cos 2x          dx  -       1  cos       x  sin3  x  +  1  ∫  sin 4  x  dx
                                                     2                      3                           3

		                       =12 ∫1 dx                -     1  ∫ cos   2x     dx    -         1     cos x sin3 x   -     1   ∫  sin 4  x  dx
                                                        2                                 3                          3

∫or 1 +1       sin4 x dx=                  1     ×  -  1  sin 2x                + c1      -     1 cos x sin3 x
          3                                  2           2  2                                   3

∫	         sin4 x=dx                 3         1    ×     -1      sin 2x       -     1 cos x sin3 x          +   c  
                                     4          2          4                        3                              

		                 	             =3 x - 3 sin 2x - 1 cos x sin3 x + c                                         where c =34 c1
                                     8 16                                 4

Example 10. 	            Evaluate                    ∫  e  x (1 + sin x         )  dx.

                                                           1 + cos x

Solution:             e  x (1 +   sin x  )           ∫ ex  1 +  2 sin x  cos    x            1 + cosx = 1 + 2cos2   x      - 1
                                 cos x                                   2         2                                      2
                   ∫     1+                 dx                                            dx
                                                                   2cos2 x
                                                                       2

                                                                                                                                           version: 1.1

                                                                                          29
   24   25   26   27   28   29   30   31   32   33   34