Page 23 - 12 Math 6
P. 23

61.. CQounaicdSraetcitcioEnqs uations                                                                            eeLLeeaarrnn..PPuunnjjaabb

∴  OM=2     y1  +  y2  -  0           2  +     x1  +  x2  -  0=2  y12 + y22 + x12 + x22 + 2x1x2 + 2 y1 y2
               2                                2                                   4

   = (x12 + y12 ) + (x22 + y22 ) + 2x1x2 + 2 y1 y2
	4
   = a2 + a2 + 2x1x2 + 2 y1y2
	4                                                              ( A and B lie on the circle.)

         OM 2 = 2a2 + 2x1x2 + 2 y1y2
                                              4
		

                 = a2 + x1x2 + y1y2 					(1)
                                           2
			

               Similarly ON 2 = a2                    + x3x4 + y3 y4    		(	chords  (2)  congruent)
                                                                                     are
		                                                         2
                                                                                                                 				
			 We know that                                      AB 2 = CD 2 	
or (x2 - x1)2 + ( y2 - y1)2 = (x4 - x3                )2 + ( y4 - y3)2

or x22 + x12 + y22 + y12 - 2x1x2 - 2 y1 y2 = x42 + x32 - 2x3x4 + y42 + y32 - 2 y3 y4

or a2 + a2 - 2x1x2 - 2 y1 y2 = a2 + a2 - 2x3x4 - 2 y3 y4 ( x12 + y12 = a2 etc)

or 2a2 - 2x1x2 - 2 y1y2 =2a2 - 2x3x4 - 2 y3 y4                                                  Challenge!

or x1x2 + y1 y2 = x3x4 + y3 y4 		                               (3)                             State and prove the

or OM 2 = ON 2                                                                                  converse of this Theorem.

Theorem 6: 	 Show that measure of the central angle of a
minor arc is double the measure of the angle subtended in the
corresponding major arc.

Proof: 	 Let the circle be x2 + y2 = a2.
A(a cosq1 , a sinq1) and B(a cosq2 , a sinq2) be end points of a
minor arc AB. Let P (a cosq , a sinq) be a point on the major arc.

Central angle subtended by the minor arc AB is ∠ AOB = q2 - q1.

We need to show m∠APB =                    1  (q2  -  q1)
                                           2

                                                                                                                 version: 1.1

                                                                        23
   18   19   20   21   22   23   24   25   26   27   28