Page 76 - 12 Math 6
P. 76

16.. CQounaicdSraetcitcioEnqsuations                                            eeLLeeaarrnn..PPuunnjjaabb

                               = 3 - 3 =0
				 4 4
	 The given equation represents a degenerate conic which is a pair of lines. The given

equation is

		2x2 + x(5 - y) + (-2y + 2) = 0

        or x = y - 5 ± ( y - 5)2 - 8(-2 y + 2)
	4

		  = y - 5 ± y2 -10 y + 25 +16 y -16
                         4

		  = y - 5 ± ( y + 3)
              4

= 2y -2, -2
                               4
		

	 Equations of the lines are 2x - y + 1 = 0 and x + 2 = 0.

Tangent                                                                    (1)
	 Find an equation of the tangent to the conic
		ax2 + 2hxy + by2 + 2gx + 2fy + c = 0				
	 at the point (x1, y1)
	 Differentiating (1) w.r.t. 	 x, we have

    2ax + 2hy + 2hx dy + 2by dy + 2g + 2 f dy =0
                                               dx dx                   dx
		

	or	dy = - ax + hy + g
                dx hx + by + f

	or	dy                                  =  - ax1 + hy1 + g
                dx                          hx1 + by1 + f
                        (  x1  ,  y1  )

	 Equation of the tangent at (x1, y1) is

		  y  -                y1        =- ax1    +  hy1  +  g  ( x1 ,  y1)
                                      hx1   +  by1  +  f

	 or 	 (x - x1)(ax1 + hy1 + g) + ( y - y1)(hx1 + by1 + f ) =0
	 or 	 axx1 + hxy1 + gx + +hx1y + by1y + fy

                                                                                version: 1.1

                                                                       76
   71   72   73   74   75   76   77   78