Page 16 - 7-Math-1 SETS
P. 16

1.1S. eQtsuadratic Equations      eeLLeeaarrnn..PPuunnjjaabb

                 (i) A ∩ B = B ∩ A              (ii) A U B = B U A            (iii) B U C = C U B
                 (iv) B ∩ C = C ∩ B            (v) A ∩ C = C ∩ A             (vi) A U C =  C U A
             2. If X = {1, 3, 7},  Y= {2, 3, 5} and Z = {1, 4, 8}, then verify that:
                 (i) X ∩ (Y ∩ Z) = (X ∩ Y) ∩ Z                (ii) X U (Y U Z) = (X U Y) U Z
             3. If S = {–2, –1, 0, 1}, T= {–4, –1, 1, 3} and U= {0, ±1, ±2}, then verify
                 that:
                 (i) S ∩ (T ∩ U) = (S ∩ T) ∩ U               (ii) S u (T j U) = (S j T) j U
             4. If O = {1, 3, 5, 7.....}, E = {2, 4, 6, 8......} and N = {1, 2, 3, 4....}, then
                 verify that:
                 (i) O ∩ (E ∩ N) = (O ∩ E) ∩ N              (ii) O j (E j N) = (O j E) j N
             5. If U = {a, b, c, ....,z}, S = {a, e, i, o, u} and T  = {x, y, z}, then verify that:
                 (i) S U f = S          (ii) T ∩ U = T         (iii) S ∩ S’ = f          (iv) T U T’ = U
             6. If A = {1, 7, 9, 11}, B = {1, 5, 9, 13}, and C = {2, 6, 9, 11}, then verify
                 that:
                 (i) A - B ≠ B - A        (ii) A - C ≠ C - A
             7. If U = {0, 1, 2,....,15}, L = {5, 7, 9,....,15}, and M = {6, 8, 10, 12, 14},
                 then verify the identity properties with respect to union and
                 intersection of sets.    

             1.3 Venn Diagram

                             A Venn diagram is simple closed figures to show sets and
             the relationships between different sets.

                              Venn diagram were introduced by a British
                              logician and philosopher “John Venn” (1834
                              - 1923). John himself did not use the term
                              “Venn diagram” Another logician “Lewis”
                              used it first time in book “A survey of symbolic
                              logic”

Version 1.1                   16
   11   12   13   14   15   16   17   18   19   20   21