Page 3 - 7-Math-4 EXPONENTS
P. 3

41. .EQxpuoandenrtsatic Equations                                                                                                         eeLLeeaar nrn. P.Puunnj ajabb
                                                                                                                                            Version 1.1
Similarly,
•	 11×11 can be written as 112. We read it as 11 to the power of 2

   where 11 is the base and 2 is the exponent.
From the above examples we can conclude that if a number “a” is
multiplied with itself n –1 times, then the product will be an, i.e.
an = a x a x a x ...................x a       (n-1 times multiplications of “a” with
itself)
We read it as “a to the power of n”or “nth power of a”where “a” is the
base and “n” is the exponent.
Example 1: 	 Express each of the following in exponential form.
(i)	 (-3)x(-3)x(-3)	 	 	 (ii)	 2x2x2x2x2x2x2

(iii)	     1     ×     1     ×     1     ×     1     	  (iv)	                -7     ×      -7  
          4         4         4         4                           12          12  

Solution:                                                       	 (ii)	 2x2x2x2x2x2x2=(2)7
(i)	 (-3)x(-3)x(-3)=(-3)3	 	

(iii)	     1     ×     1     ×     1     ×     1     = 14 4  	      (iv)	          -7     ×      -7     = 1-27 2
          4         4         4         4                                       12          12  

Example 2: 	 Identify the base and exponent of each number.

(i) 1325        (ii)   -7 9           	      (iii) am       (iv) (- 426)11      (v)                  a n      (vi)       -  x  t
                       11                                                                          b                   y  

Solution:          	  13   	          	          ( i i )  	       -   1 7 1    9 	       		     (iii)	 am
(i)	 1325 	                                                                                           base = a
          	 base   =

                                                -7
     	 exponent = 25	 	 	 base = 11 	 exponent = m

	 	 	 	 	 	 exponent = 9

(iv)	 (-426)11	 	                              	         (v)	      a         n  		                  (vi)	        -x t
                                                                  b                                            y 
	 base = - 426                                                                        a -x

	 exponent = 11	 	                                       	 base =   b 	 	 	 base = y

					                                                             exponent = n	           exponent = t

                                                                           3
   1   2   3   4   5   6   7   8