Page 3 - 7-Math-4 EXPONENTS
P. 3
41. .EQxpuoandenrtsatic Equations eeLLeeaar nrn. P.Puunnj ajabb
Version 1.1
Similarly,
• 11×11 can be written as 112. We read it as 11 to the power of 2
where 11 is the base and 2 is the exponent.
From the above examples we can conclude that if a number “a†is
multiplied with itself n –1 times, then the product will be an, i.e.
an = a x a x a x ...................x a (n-1 times multiplications of “a†with
itself)
We read it as “a to the power of nâ€or “nth power of aâ€where “a†is the
base and “n†is the exponent.
Example 1: Express each of the following in exponential form.
(i) (-3)x(-3)x(-3) (ii) 2x2x2x2x2x2x2
(iii)  1  ×  1  ×  1  ×  1  (iv)  -7  ×  -7 
ï£ï£¬ 4  ï£ï£¬ 4  ï£ï£¬ 4  ï£ï£¬ 4  ï£¬ï£ 12  ï£ï£¬ 12 
Solution: (ii) 2x2x2x2x2x2x2=(2)7
(i) (-3)x(-3)x(-3)=(-3)3
(iii)  1  ×  1  ×  1  ×  1  =ï£ï£¬ï£« 14 4 (iv)  -7  ×  -7  =ï£ï£¬ï£« 1-27 2
ï£¬ï£ 4  ï£ï£¬ 4  ï£ï£¬ 4  ï£ï£¬ 4  ï£ï£¬ 12  ï£ï£¬ 12 
Example 2: Identify the base and exponent of each number.
(i) 1325 (ii)  -7 9 (iii) am (iv) (- 426)11 (v)  a n (vi)  - x t
ï£¬ï£ 11  ï£ï£¬ b  ï£ï£¬ y 
Solution: 13 ( i i ) ï£«ï£¬ï£ - 1 7 1  9 (iii) am
(i) 1325 base = a
base =
-7
exponent = 25 base = 11 exponent = m
exponent = 9
(iv) (-426)11 (v)  a n (vi)  -x t
ï£ï£¬ b  ï£ï£¬ y 
base = - 426 a -x
exponent = 11 base = b base = y
exponent = n exponent = t
3