Page 12 - 9 Math 4
P. 12

4. Algebraic Expressions and Algebraic Formulas                       eLearn.Punjab

              Example
                    If a + b = 7and a – b = 3, then find the value of (a) a2 + b2 (b) ab

              Solution

              We are given that a + b = 7	 and a - b = 3

              (a) To find the value of (a2 + b2), we use the formula

                        (a + b)2 + (a - b)2 = 2(a2 + b2)

              Substituting the values a + b = 7 and a - b = 3, we get

                        (7)2 + (3)2 = 2(a2 + b2)

              ⇒ 49 + 9 = 2(a2 + b2)

              ⇒ 58 = 2(a2 + b2)	....(simplifying)

              ⇒                                  29 = a2 + b2  ....(dividing by 2)

              (b) To find the value of ab, we make use of the formula

                        (a + b)2 - (a - b)2 = 4ab

                        (7)2 - (3)2 = 4ab

              ⇒ 49 - 9 = 4ab

              ⇒                                  40 = 4ab      ....(simplifying)

              ⇒                                  10 = ab       ....(dividing by 4)

              Hence a2 + b2 = 29 and ab = 10.

Version: 1.1  (ii)	(a + b + c)2 = a 2 + b2 + c2 + 2ab + 2bc + 2ca
                     This formula, square of a trinomial, involves three expressions,

              namely; (a + b + c), (a2 + b2 + c2) and 2(ab + bc + ca). If the values
              of two of them are known, the value of the third expression can be
              calculated. The method is explained in the following examples.

              Example 1
                    If a2 + b2 + c2 = 43 and ab + bc + ca = 3, then find the value of

              a + b + c.

              Solution
                 We know that
                         (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

              ⇒ (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)

                                                   12
   7   8   9   10   11   12   13   14   15   16   17